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Abstract

For an (m + 1)-dimensional space–time (Xm+1, g), define a mapped null hypersurface to be a smooth map ν : Nm
→ Xm+1

(that is not necessarily an immersion) such that there exists a smooth field of null lines along ν that are both tangent and g-
orthogonal to ν.

We study relations between mapped null hypersurfaces and Legendrian maps to the spherical cotangent bundle ST ∗M of an
immersed spacelike hypersurface µ : Mm

→ Xm+1. We show that a Legendrian map λ̃ : Lm−1
→ (ST ∗M)2m−1 defines a

mapped null hypersurface in X. On the other hand, the intersection of a mapped null hypersurface ν : Nm
→ Xm+1 with an

immersed spacelike hypersurface µ′
: M′m

→ Xm+1 defines a Legendrian map to the spherical cotangent bundle ST ∗M′. This
map is a Legendrian immersion if ν came from a Legendrian immersion to ST ∗M for some immersed spacelike hypersurface
µ :Mm

→ Xm+1.
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We work in the C∞ category, and the word “smooth” means C∞. The manifolds in this work are assumed to
be smooth without boundary. They are not assumed to be oriented, or connected, or compact unless the opposite is
explicitly stated. In this work (Xm+1, g) is an (m + 1)-dimensional Lorentzian manifold that is not assumed to be
geodesically complete.

A “vector field” on a manifold Y is a smooth section of the tangent bundle τY : T Y → Y , and a “vector field along
a map” φ : Y1 → Y2 of one manifold to another is a smooth map Φ : Y1 → T Y2 such that φ = τY2 ◦ Φ. Covector
fields and line fields on a manifold and along a map φ are defined in a similar way.

1. Preliminaries

Let us recall some basic Lorentz geometry facts. Put Ξ to be the space of vector fields on X. There exists a unique
connection ∇

g on X that satisfies the following metric compatibility and torsion free conditions:

ξ1g(ξ2, ξ3) = g(∇
g
ξ1

ξ2, ξ3) + g(ξ2, ∇
g
ξ1

ξ3),

[ξ1, ξ2] = ∇
g
ξ1

ξ2 − ∇
g
ξ2

ξ1,
(1.1)
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for all ξ1, ξ2, ξ3 ∈ Ξ ; see [1, p. 22]. This connection is called a Levi-Civita connection. When no confusion arises we
will write ∇ instead of ∇

g.

A geodesic c : (a, b) → (X, g) is a smooth curve satisfying ∇c′c′
= 0, for all of its points. Similarly to the

Riemannian case, one uses geodesics to define the exponential expx : Tx X → X. Note that expx is defined on the star-
convex, with respect to 0, domain of Tx X, rather than on the whole Tx X. There is an open neighborhood Vx ⊂ Tx X
of 0 such that expx |Vx is a diffeomorphism. The open set Ux = expx (Vx ) is called a normal neighborhood of x .

A neighborhood is geodesically convex if any two of its points can be joined by a unique geodesic arc inside of it.
The result of Whitehead [12,13], [11, Section 5, Proposition 7] is that every point in a semi-Riemannian, and hence
Lorentzian manifold has a geodesically convex normal neighborhood. A simple region is a geodesically convex normal
neighborhood with compact closure whose boundary is diffeomorphic to Sm .

A non-zero vector v ∈ T X is called spacelike, non-spacelike, null (lightlike), or timelike if g(v, v) is positive, non-
positive, zero, or negative, respectively. A piecewise smooth curve is called spacelike, non-spacelike, null, or timelike
if all of its velocity vectors are respectively spacelike, non-spacelike, null, or timelike. For a point x in a Lorentz (X, g)

the set of all non-spacelike vectors in Tx X consists of two connected components that are hemicones. A continuous
with respect to x ∈ X choice of one of the two hemicones is called the time orientation of X. The non-spacelike
vectors from these chosen hemicones are called future pointing. A time oriented (Xm+1, g) is called a space–time.

An immersion κ : Kk
→ Xm+1 of a k-manifold is said to be an immersed spacelike or timelike submanifold

if the pull back of g to TK is respectively a Riemannian or a Lorentzian metric. An immersion (respectively an
embedding) i : Hm

→ Xm+1 of an m-manifold is called an immersed (respectively an embedded) hypersurface. An
immersed hypersurface is called an immersed null hypersurface if for every h ∈ H the pull back of g is degenerate
on ThH. Similarly one defines embedded null hypersurfaces and immersed and embedded spacelike and timelike
hypersurfaces.

An immersed (or an embedded) hypersurface i : Hm
→ Xm+1 can be canonically equipped with a line field

Lh ⊂ Ti(h)X, h ∈ H, along i such that for every h ∈ H the line Lh is g-orthogonal to i∗(ThH) ⊂ Ti(h)X. It is easy to
verify that an immersed hypersurface is spacelike, timelike or null if and only if for every h ∈ H the non-zero vectors
in Lh are respectively timelike, spacelike or null. Since the Lorentz metric is non-degenerate, for an immersed null
hypersurface the line field Lh is tangent to i(H), i.e. Lh ⊂ i∗(ThH) for all h ∈ H. This observation motivates the
following definition.

Definition 1.1 (Mapped Null Hypersurface). A smooth map ν : Nm
→ Xm+1 of an m-manifold is called a mapped

null hypersurface if there exists a smooth (non-oriented) line field Ln ⊂ Tν(n)X, n ∈ N , along ν such that for every
n ∈ N the non-zero vectors in Ln are null, Ln ⊂ ν∗(TnN ), and Ln is g-orthogonal to ν∗(TnN ) ⊂ Tν(n)X.

Two null vectors are orthogonal if and only if one of them is a multiple of the other. Hence the line field Ln in the
above definition is completely determined by the map ν.

Every immersed null hypersurface is a mapped null hypersurface. However mapped null hypersurfaces can be
quite singular. For example if Y m−1 is an (m − 1)-manifold and γ : R → X is a curve such that γ ′(t) is null and
non-zero for all t , then the composition of γ and of the projection Y m−1

× R → R gives a mapped null hypersurface
Y m−1

× R → Xm+1.

Let us recall some basic contact geometry facts. Let Q2k−1 be a smooth (2k − 1)-dimensional manifold equipped
with a smooth (non-oriented) hyperplane field ζ = {ζ 2k−2

q ⊂ Tq Q2k−1
| q ∈ Q}. This hyperplane field is called a

contact structure, if it can be locally presented as the kernel of a 1-form α with nowhere zero α ∧ (dα)k−1.

An immersion (respectively an embedding) i : Lk−1
→ Q2k−1 of a (k − 1)-dimensional manifold Lk−1

into a contact manifold (Q2k−1, ζ ) is called a Legendrian immersion (respectively a Legendrian embedding), if
i∗(TlL) ⊂ ζi(l), for all l ∈ L.

Definition 1.2 (Legendrian Map). We say that a smooth map λ̃ : Lk−1
→ Q2k−1 to a contact (Q2k−1, ζ ) is a

Legendrian map if λ̃∗(TlL) ⊂ ζ̃λ(l), for all l ∈ L. Every Legendrian immersion is a Legendrian map. However a
Legendrian map can be quite singular and the trivial map Lk−1

→ pt ∈ Q2k−1 is a Legendrian map.

Example 1.3 (The Natural Contact Structure on ST ∗M). For a smooth manifoldMk , put ST ∗M to be the spherical
cotangent bundle, i.e. the quotient of T ∗M minus the zero section by the action of the group R+ of positive real
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numbers under multiplication. Put pr = prM : ST ∗M → M to be the corresponding Sk−1-bundle map. A point
p ∈ ST ∗M is the equivalence class of non-zero linear functionals on Tpr pM. Two functionals are equivalent if and
only if their kernels are equal and the half-spaces of Tpr pM where the functionals are positive are equal. Thus p is
completely determined by the hyperplane ker p ⊂ Tpr(p)M together with the half-space of Tpr pM \ ker p where the
functionals are positive.

The natural contact structure

ζ = {ζ 2k−2
p ⊂ Tp(ST ∗M)2k−1, p ∈ ST ∗M}

is given by ζp = (pr∗)
−1(ker p).

A map λ̃ : Lk−1
→ (ST ∗M)2k−1 can be described as the pair consisting of the smooth map λ = pr ◦̃λ and a

smooth nowhere zero covector field θl ∈ T ∗

λ(l)M, l ∈ L, along λ such that for every l ∈ L the equivalence class of θl

is λ̃(l). The covector field θl is defined uniquely up to a multiplication by a positive smooth function L → R.

Clearly λ̃ is a Legendrian map if and only if λ∗(TlL) ⊂ ker θl , for all l ∈ L.

If M is equipped with a Riemannian or Lorentzian metric h, then we can identify the tangent and the cotangent
bundles of M and we can identify the spherical tangent and the spherical cotangent bundles pr : STM → M and
pr : ST ∗M → M. Thus a smooth map λ̃ : L → STM = ST ∗M can be described as the pair consisting of the
smooth map λ = pr ◦̃λ and a smooth nowhere zero vector field Xl ⊂ Tλ(l)M, l ∈ L, along λ such that for every l ∈ L
the equivalence class of Xl is λ̃(l). Clearly λ̃ is a Legendrian map if and only if X (l) is h-orthogonal to λ∗(TlL), for
all l ∈ L.

Now let (Xm+1, g) be a space–time and let ν : Nm
→ Xm+1 be a mapped null hypersurface. Let Ln ∈ Tν(n)X, n ∈

N , be the unique smooth non-oriented line field along ν from the definition of the mapped null hypersurface. Since
(X, g) is time oriented, we can orient the null lines Ln in the direction of the future. This oriented line field defines
the Legendrian map ν̃ : N → ST X such that prX ◦̃ν = ν.

2. From Legendrian maps to mapped null hypersurfaces

Let (Xm+1, g) be a space–time, let µ : Mm
→ Xm+1 be an immersed spacelike hypersurface, and let g be the

induced Riemannian metric on M. Let λ̃ : Lm−1
→ ST ∗M = ST M be a Legendrian map that is described by the

pair λ = pr ◦λ and the smooth unit length vector field Xl ∈ Tλ(l)M, l ∈ L, along λ.

Since the immersed hypersurface µ is spacelike, for each l ∈ L the space Tµ◦λ(l)X splits as the direct sum of
µ∗(Tλ(l)M) and its one-dimensional g-orthogonal compliment (µ∗(Tλ(l)M))⊥ consisting of timelike vectors. Thus
for each l ∈ L, there exists the unique future pointing null vector Nl = (N s

l , N t
l ) ∈ µ∗(Tλ(l)M) ⊕ (µ∗(Tλ(l)M))⊥ =

Tµ◦λ(l)X such that N s
l = µ∗(Xl). Put γl(t) to be the maximal null geodesic such that γ ′

l (0) = Nl .

We get the map from a subset of L × R to X defined as (l, t) → γl(t), for l ∈ L and t in the domain of the null
geodesic γl . Since each point of X has a geodesically convex normal neighborhood, the above map is defined on an
open neighborhood of L× 0 ⊂ L× R. Put N ⊂ Lm−1

× R to be the maximal open neighborhood where the map is
defined and put ν : Nm

→ Xm+1 to be the resulting map.
It is easy to see that γl(t) is a future directed null geodesic such that γ ′

l (0) is g-orthogonal to (µ ◦ λ)∗(TlL) ⊂

Tµ◦λ(l)X. Thus ν is a mapped hypersurface corresponding to a congruence of such null geodesics.
If λ : Lm−1

→ Mm is an immersion whose normal bundle is orientable, then there are exactly two unit lengths
vector fields that are g-orthogonal to λ and they define two Legendrian immersions L → STM. The union of the
mapped hypersurfaces ν constructed for these two Legendrian immersions should be thought of as the wave front
associated to µ ◦ λ(L).

Theorem 2.1. Let (Xm+1, g) be a space–time, let µ : Mm
→ X be an immersed spacelike hypersurface, and let

λ̃ : Lm−1
→ ST ∗M be a Legendrian map. Let ν : Nm

→ Xm+1 be the map obtained as above from µ and λ̃. Then
the following two statements hold:

1. ν is a mapped null hypersurface. In particular, the map ν̃ : N → ST X = ST ∗X that sends (l, t) ∈ N ⊂ L× R to
the direction of γ ′

l (t) is a Legendrian map such that prX ◦̃ν = ν, see Example 1.3.
2. If λ̃ is a Legendrian immersion, then ν̃ also is a Legendrian immersion.
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Proof. Let us prove statement 1 of the theorem. We have that L × {0} ⊂ N ⊂ L × R and that N ∩ (l × R) is
connected, for all l ∈ L. The map ν is smooth, since the velocity vectors γ ′

l (0) = Nl smoothly depend on l ∈ L and
since ν(l, t) = γl(t).

Consider the vector field Ñ = Ñn = (0, ∂
∂t ) on N ⊂ L× R. Define the vector field Nn, n = (l, t) ∈ N ⊂ L× R,

along ν via Nn = ν∗(Ñn) = ν∗(l, t)(0, ∂
∂t ) ∈ Tν(n)X. Clearly Nn = γ ′

l (t). Also N(l,0) = Nl for all l ∈ L.

Put Ln ⊂ Tν(n)X to be the line generated by γ ′

l (t). We get the smooth line field Ln, n ∈ N , along ν. Since γl are
null geodesics, all the non-zero vectors in the lines Ln are null. Also Ln ⊂ ν∗(TnN ) by construction.

Thus to prove the theorem it suffices to show that g
(
Nn, ν∗(Z̃n)

)
= 0 for all n ∈ N , Z̃n ∈ TnN . Fix n0 = (l0, t0),

and Z̃n0 ∈ Tn0N . Extend Z̃n0 to a smooth vector field Z̃ = Z̃n, n ∈ N , on N such that [Ñ , Z̃ ] vanishes in a
neighborhood of (l0 × R) ∩N .

Consider the following commutative diagram:

(TN , g̃)
j

−−−−→ (ν∗T X, ĝ, ∇ ĝ)
F

−−−−→ (T X, g, ∇g)yτN

yν∗τX

yτX

N id
−−−−→ N ν

−−−−→ X.

(2.1)

Here τX : T X → X is the tangent bundle, ν∗τX : ν∗T X → N is the induced bundle, ĝ = ν∗g is the induced
tensor field on ν∗T X, ∇

ĝ is the connection on ν∗τX induced from ∇
g , j : TN → ν∗T X is the natural bundle map,

and g̃ = ν∗g is the induced tensor field on TN . Put N̂ = j (Ñ ) and Ẑ = j (Z̃) to be the sections of the vector bundle
ν∗τX.

Let T be the torsion tensor field of ∇
g and let W̃i : N → TN , i = 1, 2, be vector fields. We have

T (ν∗(W̃1), ν∗(W̃2)) = ∇
ĝ
W̃1

j (W̃2) − ∇
ĝ
W̃2

j (W̃1) − j ([W̃1, W̃2]), see [4, Lemma in Section 2.5]. Since ∇
g is torsion

free, we have

∇
ĝ
W̃1

j (W̃2) − ∇
ĝ
W̃2

j (W̃1) = j ([W̃1, W̃2]), (2.2)

for every two smooth vector fields W̃1, W̃2 : N → TN .

Since ∇
g is compatible with g, we have

W̃ ĝ(Ẑ1, Ẑ2) = ĝ
(
∇

ĝ
W̃

Ẑ1, Ẑ2

)
+ ĝ

(
Ẑ1, ∇

ĝ
W̃

Ẑ2

)
, (2.3)

for every vector field W̃ : N → TN and every two sections Ẑ1, Ẑ2 of ν∗τX : ν∗T X → N . This identity (2.3) is
proved in [4, Lemma in Section 3.4] for connections induced from connections compatible with a Riemannian metric.
However the same proof works for connections compatible with a Lorentzian metric.

Clearly, g
(
Nn0 , ν∗(Z̃n0)

)
= g̃

(
Ñn0 , Z̃n0

)
. Using identity (2.3) and the fact that the vectors N(l,t) are the velocity

vectors γ ′

l (t) of the null geodesics, we have

Ñ g̃(Ñ , Z̃) = Ñ ĝ(N̂ , Ẑ) = ĝ(∇
ĝ
Ñ

N̂ , Ẑ) + ĝ(N̂ , ∇
ĝ
Ñ

Ẑ) = 0 + ĝ(N̂ , ∇
ĝ
Ñ

Ẑ). (2.4)

Using identities (2.2) and (2.3) and the fact that the vectors Nn are null, we have

ĝ(N̂ , ∇
ĝ
Ñ

Ẑ) = ĝ
(

N̂ , ∇
ĝ
Z̃

N̂ + j ([Ñ , Z̃ ])
)

= ĝ
(

N̂ , ∇
ĝ
Z̃

N̂ + 0
)

=
1
2

ĝ(∇
ĝ
Z̃

N̂ , N̂ ) +
1
2

ĝ(N̂ , ∇
ĝ
Z̃

N̂ )

=
1
2

Z̃ ĝ(N̂ , N̂ ) =
1
2

Z̃0 = 0. (2.5)

Combining Eqs. (2.4) and (2.5) we have Ñ g̃(Ñ , Z̃) = 0. Since Ñ = (0, ∂
∂t ), we have

g̃(Ñn0 , Z̃n0) = g̃(Ñ(l0,t0), Z̃(l0,t0)) = g̃(Ñ(l0,0), Z̃(l0,0)). (2.6)
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Decompose Z̃(l0,0) as Z̃L(l0,0) + r Ñ(l0,0), with Z̃L(l0,0) ∈ T(l0,0)(L × 0). We identify T(l0,0)(L × 0) with Tl0L and we
denote by Z̃Ll0 ∈ Tl0L the vector corresponding to Z̃L(l0,0) ∈ T(l0,0)(L× 0). We have

g̃(Ñ(l0,0), Z̃(l0,0)) = g̃
(

Ñ(l0,0), Z̃L(l0,0) + r Ñ(l0,0)

)
= rg

(
ν∗(Ñ(l0,0)), ν∗(Ñ(l0,0))

)
+ g

(
ν∗(Ñ(l0,0)), ν∗(Z̃L(l0,0))

)
= rg(Nl0 , Nl0) + g

(
Nl0 , (µ ◦ λ)∗(Z̃Ll0 )

)
= 0 + g

(
Nl0 , (µ ◦ λ)∗(Z̃Ll0 )

)
. (2.7)

Recall that Nl0 = (N s
l0
, N t

l0
) ∈ µ∗(Tλ(l0)M) ⊕ (µ∗(Tλ(l0)M))⊥ = Tµ◦λ(l0)X and that N s

l0
= µ∗(Xl0), where

Xl0 ∈ Tλ(l0)M is the unit vector whose equivalence class is λ̃(l0). Thus

g
(

Nl0 , (µ ◦ λ)∗(Z̃Ll0 )
)

= g
(

N s
l0 + N t

l0 , µ∗(λ∗(Z̃Ll0 ))
)

= g
(
µ∗(Xl0), µ∗(λ∗(Z̃Ll0 ))

)
+ g

(
N t

l0 , µ∗(λ∗(Z̃Ll0 ))
)

= g
(

Xl0 , λ∗(Z̃Ll0 )
)

+ 0. (2.8)

Since λ̃ is Legendrian, Xl0 is g-orthogonal to λ∗(Tl0L) ⊂ Tλ(l0)M and hence g
(

Xl0 , λ∗(Z̃Ll0 )
)

= 0. Combining
Eqs. (2.6)–(2.8) we have

g(Nn0 , Zn0) = g̃(Ñ(l0,t0), Z̃(l0,t0)) = g̃(Ñ(l0,0), Z̃(l0,0))

= g
(

Nl0 , (µ ◦ λ)∗(Z̃Ll0 )
)

= g
(

Xl0 , λ∗(Z̃Ll0 )
)

= 0. (2.9)

This finishes the proof of Statement 1 of the theorem.
Let us prove statement 2. Here the main difficulty is that even when (X, g) is geodesically complete, the geodesic

flow on T X does not seem to give rise to a flow on ST X or on the subspace of it formed by the null directions, except
for some very special (X, g).

Consider the map ẽxp′ : T X → T X that associates to v ∈ Tx X the velocity vector γ ′
v(1) ∈ Tγv(1)X of the unique

inextensible geodesic γv(t) with γv(0) = x and γ ′
v(0) = v. Put U ′

⊂ T X to be the (maximal) domain of this map. It is
an open set, see [4, Discussion after Lemma 1 in Section 2.8 and Proposition in Section 2.9]. Clearly ẽxp′ : U ′

→ U ′

is a smooth bijection. The inverse map sends v ∈ Tx X to ẽxp′(−v) and hence is also smooth. Thus ẽxp′ : U ′
→ U ′ is

a diffeomorphism.
Put O ⊂ U ′

⊂ T X to be (the image of) the zero section of T X → X. Put U = U ′
\ O . Clearly the restriction

ẽxp′|U is a diffeomorphism U → U that we denote by ẽxp.

Consider the map κ̃ : L → ST X that is described by the pair: the map κ = µ ◦ λ : L → X and the vector field
Nl ∈ Tκ(l)X, l ∈ L, along κ . Let us show that κ̃ is an immersion. Take l ∈ L and its neighborhood O ⊂ L such
that λ(O) is contained in an open neighborhood P ⊂ M for which the restriction µ|P : P → X is an embedding.
It suffices to show that κ̃|O is an immersion. The restriction of the bundle prM : STM → M to P ⊂ M gives the
Sm−1-bundle STP → P . The restriction of prX : ST X → X to µ(P) gives the Sm-bundle ST X|µ(P) → µ(P). The
embedding µ|P induces the natural bundle map

STP i
−−−−→ ST X|µ(P)y y

P µ|P
−−−−→ µ(P).

(2.10)

For p ∈ P put Vp ∈ Tµ(p)X to be the unique future pointing timelike vector such that g(Vp, Vp) = −1 and Vp is
g-orthogonal to µ∗(TpM). Put V, −V ⊂ ST X|µ(P) to be the images of the two sections of ST X|µ(P) → µ(P)

that send µ(p) to the direction of Vp and to the direction of −Vp, respectively. The direct sum decomposition
Tµ(p)X = µ∗(TpP)⊕ span(Vp) induces the natural fiber preserving smooth map π : ST X|µ(P) \ (V t−V ) → STP.

For all l ∈ O we have µ∗(Xl) + Vµ(l) = Nl . Thus the maps i ◦ λ̃|O and π ◦ κ̃|O : O → STP are equal. Since i is an
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embedding, λ̃ is an immersion, and π is smooth, we get that κ̃|O is an immersion, and hence κ̃ is an immersion. Put
κ̂ : L → T X \ O to be the map described by the pair κ and the vector field Nl , l ∈ L, along κ . Since κ̃ is immersion
and it is a composition of κ̂ and the smooth quotient map T X \ O → ST X, we get that κ̂ is an immersion.

Define the map ν̂ : N → T X by sending (l, t) ∈ N ⊂ L×R to γ ′

l (t) ∈ Tν(l,t)X. Let us show that ν̂ is an immersion.
Put N+,N−,N 0

⊂ N ⊂ L× R to be the subsets formed by points (l, t) whose t coordinate is respectively greater
than zero, less than zero, and is equal to zero.

Clearly N+ is open and ν̂(l, t) = ẽxp(t Nl), for all (l, t) ∈ N+. Since κ̂ : L → T X \ O is an immersion, we get
that the map β+

: N+
→ T X \ O that sends (l, t) ∈ N+ to t Nl is an immersion. Since ẽxp is a diffeomorphism, we

get that ν̂ is an immersion at all points of N+. Similarly one gets that ν̂ is an immersion at all points of N−.

Take (l, 0) ∈ N 0 and a non-zero tangent vector (vL, vR) ∈ T(l,0)N ⊂ T(l,0)(L × R) = TlL ⊕ T0R = TlL ⊕ R.

Then ν̂∗(vL, vR) ∈ TNl (T X) and (τT X)∗ ◦ ν̂∗(vL, vR) = (τT X)∗ ◦ κ̂∗(vL)+ vRNl ∈ Tν(l,0)X. Since (τT X)∗ ◦ κ̂∗(vL) ∈

µ∗(Tλ(l)M) and Nl 6∈ µ∗(Tλ(l)M), we get that ν̂∗(vL, vR) 6= 0 if vR 6= 0. On the other hand ν̂∗(vL, 0) = κ̂(vL) is
non-zero since κ̂ is an immersion. Thus ν̂ is an immersion at all the points of N 0.

Let q : T X \ O → ST X be the quotient map by the action of R+ that we used to define ST X. Clearly ν̃ = q ◦ ν̂.
Since ν̂ is an immersion, to prove that ν̃ is an immersion it suffices to show that for every n ∈ N and non-zero
v ∈ TnN the non-zero vector (̂ν)∗(v) is not tangent to the R+-fiber of q containing ν̂(n).

We prove this by considering three cases: n ∈ N+, n ∈ N−, and n ∈ N 0.

Assume that n = (l, t) ∈ N+ and that ν̂∗(v) is tangent to the R+-fiber of q containing ν̂(n). Let α : (−ε, ε) →

T X\O defined by α(τ) = ν̂(n)+τ ν̂(n) be the parameterization of a small part of the R+-fiber of q that contains ν̂(n).
Since ẽxp is a diffeomorphism, we get that (ẽxp)−1

∗ ◦ ν̂∗(v) is a non-zero vector tangent to the curve α̃ = ẽxp−1
◦ α at

ẽxp−1
◦ α(0).

Let γ (t) be the null geodesic such that γ (0) = µ ◦ λ(l) and γ ′(0) = t Nl . Since ν̂|N+ = ẽxp ◦ β+ we get that
γ (1) = τX(̂ν(n)) and γ ′(1) = ν̂(n). From the definition of ẽxp we get that α̃(τ ) = ẽxp−1(α(τ)) = (τ + 1)γ ′(−τ) ∈

Tγ (−τ)X, for all τ ∈ (−ε, ε).

Now ẽxp−1
∗ ◦ ν̂∗(v) is a non-zero vector tangent to the immersed submanifold S = {t Nl |t ∈ R, l ∈ L} ⊂ T X at the

point t Nl . Since τX(t Nl) = µ ◦ λ(l) for all t ∈ R, l ∈ L, we get that (τX)∗
(
ẽxp−1

∗ ◦ ν̂∗(v)
)

∈ µ∗(Tλ(l)M). Clearly
(τX)∗(̃α

′(0)) = −γ ′(0) = −t Nl 6∈ µ∗(Tλ(l)M). Thus ẽxp−1
∗ ◦ ν̂∗(v) is not tangent to α̃ at α̃(0) and ν̃ is an immersion

at n ∈ N+.

Hence ν̃ is an immersion at all the points ofN+. Similarly one gets that ν̃ is an immersion at all the points ofN−.

Let n = (l, 0) be a point ofN 0 and let (vL, vR) ∈ T(l,0)N = TlL⊕ T0R = TlL⊕ R be a non-zero tangent vector.
Let us show that ν̂∗(vL, vR) is not tangent to the R+-fiber of q containing ν̂(l, 0) = Nl . Note that (τT X)∗ applied to any
vector tangent to the R+-fiber of q is zero, while, as we discussed above, (τT X)∗ ◦̂ν∗(vL, vR) = (τT X)∗◦κ̂∗(vL)+vRNl
is non-zero for vR 6= 0. This give the proof for vectors (vL, vR) with non-zero vR.

Note that ν̂∗(vL, 0) = κ̂∗(vL). Clearly κ̃ = q◦κ̂ and since κ̃ is an immersion we get that q∗◦κ̂∗(vL) = q∗◦̂ν∗(vL, 0)

is non-zero for every non-zero vL. On the other hand, q∗ applied to any vector tangent to the R+-fiber of q is zero.
Thus ν̃ is an immersion at all the points of N 0

⊂ N and hence ν̃ : N → ST X is an immersion. �

Remark 2.2. Let ν : Nm
→ Xm+1 be a mapped null hypersurface and let h : N ′

→ N be a diffeomorphism. Then
clearly ν ◦ h : N ′

→ X is a mapped null hypersurface.
If the natural map ν̃ : Nm

→ ST X = ST ∗X is an immersion, then it is a Legendrian immersion and the map
ν̃ ◦ h : N ′

→ ST X = ST ∗X associated with the mapped null hypersurface ν ◦ h : N ′
→ X also is a Legendrian

immersion.
Similarly if U ⊂ N is open, then ν|U : U → X is a mapped null hypersurface. Note that if ν|U is an embedding,

then ν|U : U → X is an embedded null hypersurface.

3. From mapped null hypersurfaces to Legendrian maps

Let (Xm+1, g) be a space–time. Let ν : Nm
→ Xm+1 be a mapped null hypersurface, let µ : Mm

→ Xm+1 be
an immersed spacelike hypersurface, and let Lµ,ν be the pull back of the maps µ and ν. We will show that µ and ν

canonically define a Legendrian map λ̃µ,ν : Lµ,ν → ST ∗M of the (m − 1)-dimensional pull-back manifold and that
Im(prM ◦̃λµ,ν) = Im µ−1(Im µ ∩ Im ν).
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We will also show that if the map ν̃ : Nm
→ ST X associated to ν is an immersion, then λ̃µ,ν is a Legendrian

immersion. In this case the singularities of prM ◦̃λµ,ν are Legendrian singularities. In particular, this is so when ν is
the mapped null hypersurface arising from a Legendrian immersion λ̃′

: L′
→ ST ∗M′ for some immersed spacelike

hypersurface µ′
: M′

→ X, see Theorem 2.1.
The Lorentz metric g allows us to identify ST X with ST ∗X. Let Nn ∈ Tν(n)X, n ∈ N , be a smooth nowhere zero

null vector field along ν such that for all n ∈ N the equivalence class of Nn is ν̃(n) ∈ ST X = ST ∗X. For n ∈ N , put
θn ∈ T ∗

ν(n)X to be the non-zero covector such that θn(v) = g(Nn, v), for all v ∈ Tν(n)X. We get the smooth nowhere
zero covector field θn, n ∈ N , along ν such that for all n ∈ N the equivalence class of θn is ν̃(n) ∈ ST ∗X = ST X.

Consider the pull-back diagram

Lµ,ν

λµ,ν
−−−−→ Mmy j

yµ

Nm ν
−−−−→ Xm+1.

(3.1)

By definition of the pull back Lµ,ν = {(m, n) ∈ M × N |µ(m) = ν(n)} ⊂ M × N . Choose (m, n) ∈ Lµ,ν .
Since µ is an immersion, µ∗(TmM) is m-dimensional. Since ν is a mapped null hypersurface and by definition of ν̃,
the non-zero vector Nn ∈ ν∗(TnN ) is null. Since µ is spacelike, all the non-zero vectors in µ∗(TmM) are spacelike,
and hence Nn 6∈ µ∗(TmM). For dimension reasons we get that the minimal linear subspace of Tν(n)X = Tµ(m)X
that contains µ∗(TmM) ∪ ν∗(TnN ) is equal to Tν(n)X = Tµ(m)X. Thus µ and ν are transverse and hence Lµ,ν is an
(m − 1)-dimensional smooth embedded submanifold ofM×N .

Clearly λµ,ν(m, n) = m and j (m, n) = n, for (m, n) ∈ Lµ,ν . We define the smooth covector field φl ∈ T ∗

λ(l)M, l ∈

Lµ,ν , along λµ,ν as follows. For l = (m, n) ∈ Lµ,ν and v ∈ Tλ(l)M = TmM put φ(v) = θn(µ∗(v)). Recall that the
covector θn is non-zero, θn|ν∗(TnN ) is zero, and Tµ(m)X = Tν(n)X is the linear span of µ∗(TmM) ∪ ν∗(TnN ). Thus
the covector field φl , l ∈ Lµ,ν , along λµ,ν is nowhere zero. Hence the pair: λµ,ν and the covector field φl , l ∈ Lµ,ν ,
along λµ,ν define a map λ̃µ,ν : Lµ,ν → ST ∗M = STM. It is easy to see that the map λ̃µ,ν does not depend on the
choice of the vector field Nn, n ∈ N , along ν from which we started the construction.

Theorem 3.1. Let (Xm+1, g) be a space–time, let ν : Nm
→ Xm+1 be a mapped null hypersurface, and let

µ : Mm
→ Xm+1 be an immersed spacelike hypersurface. Let Lµ,ν be the smooth (m − 1)-dimensional manifold

that is the pull back of µ and ν. Let λ̃µ,ν : Lµ,ν → ST ∗M be the map constructed above. Then

1. The map λ̃µ,ν : Lµ,ν → ST ∗M is a Legendrian map and Im(prM ◦̃λµ,ν) = Im µ−1(Im µ ∩ Im ν).

2. If the map ν̃ : N → ST X that is naturally associated with ν is an immersion, then the map λ̃µ,ν : Lµ,ν → ST ∗M
is a Legendrian immersion.

Proof. Let us prove statement 1 of the theorem. The fact that Im(prM ◦̃λµ,ν) = Im µ−1(Im µ ∩ Im ν) is clear from
the construction of λ̃µ,ν .

To see that λ̃µ,ν is a Legendrian map it suffices to show that φl
(
(λµ,ν)∗(v)

)
= 0 for every l ∈ Lµ,ν and v ∈ TlLµ,ν .

By definition of φl we have φl
(
(λµ,ν)∗(v)

)
= θn

(
(µ ◦ λµ,ν)∗(v)

)
. Since the diagram (3.1) is commutative, we

have θn
(
(µ ◦ λµ,ν)∗(v)

)
= θn (ν∗( j∗(v))). By definition of ν̃ we have that θn|Im ν∗(TnN ) = 0. Thus φl

(
(λµ,ν)∗(v)

)
=

θn (ν∗( j∗(v))) = 0.

To prove statement 2 of the theorem we will show that for every l = (m, n) ∈ Lµ,ν the map λ̃µ,ν is an immersion
at l. Put P ⊂ M to be an open neighborhood such that m ∈ P and µ|P is an embedding.

Put L = LP = {(m, n) ∈ M × N |µ(m) = ν(n) and m ∈ P} ⊂ Lµ,ν . We will denote λ̃µ,ν |L : L → ST ∗P ⊂

STM by λ̃L and we will denote λµ,ν |L : L → P by λL. It suffices to show that λ̃L is an immersion at l ∈ L.

Take a non-zero vector v = (vP , vN ) ∈ TlL ⊂ T(m,n)(P×N ) = TmP⊕TnN . From the construction of λL and λ̃L
we get that (prP )∗ ◦ (̃λL)∗(v) = vP . Thus (̃λL)∗(v) 6= 0 if vP 6= 0. Hence it suffices to show that (̃λL)∗(0, vN ) 6= 0
for (0, vN ) ∈ TlL with non-zero vN .

The embedding µ|P : P → X induces the diffeomorphism ST µ|P : STP → ST µ(P) onto the spherical tangent
bundle of µ(P).

Consider the map ν̃ ◦ j : L → ST X that maps (m, n) ∈ L to the equivalence class of Nn ∈ Tν(n)X. Since L is the
pull back of ν and µ|P we get that ν(n) ∈ µ(P) for all (m, n) ∈ L. Thus ν̃ ◦ j (L) is in the total space ST X|µ(P) of the
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restriction of the Sm-bundle ST X → X to µ(P) ⊂ X. Consider the Sm−1-bundle C → X whose total space C ⊂ ST X
is formed by the future pointing null directions. Clearly ν̃(N ) ⊂ C. Thus ν̃ ◦ j (L) is in the total space C|µ(P) of the
restriction of the bundle C → X to µ(P).

Put T X|µ(P) to be the total space of the restriction to µ(P) of the bundle T X → X. The g-orthogonal projection
T X|µ(P) → T µ(P) induces the diffeomorphism δ : C|µ(P) → ST µ(P).

The Riemannian metric g = µ∗g on TP allows us to identify STP with ST ∗P. For l = (m, n) ∈ L put
Vl ∈ TλL(l)P = TmP to be the unique vector such that φl(w) = g(Vl , w), for all w ∈ TmP . From the construction of
φl it is easy to see that µ∗(Vl) is the g-orthogonal projection of Nn ∈ Tν(n)X to µ∗(TmP) ⊂ Tν(n)X. One verifies that
the equivalence class of Vl in STP = ST ∗P is λ̃L(l).

Thus we have that the maps λ̃L : L → STP = ST ∗ P and (ST µ|P )−1
◦ δ ◦ ν̃ ◦ j |L : L → STP are equal.

Thus if v = (0, vN ) ∈ TlL is a non-zero vector, then we have (̃λL)∗(v) = (ST µ|P )−1
∗ ◦ δ∗ ◦ ν̃∗ ◦ ( j |L)∗(0, vN ) =

(ST µ|P )−1
∗ ◦ δ∗ ◦ ν̃∗(vN ). Since vN 6= 0, ν̃ is an immersion, and (ST µP )−1, δ are diffeomorphisms, we get that

(̃λL)∗(v) 6= 0. Hence λ̃µ,ν is an immersion. �

Example 3.2 (Null Cone). Let (X, g) be a space–time. For x ∈ X put C+
x (respectively C−

x ) to be the hemicone of
future pointing (respectively past pointing) null vectors in Tx X. Put C+

x ⊂ C+
x and C−

x ⊂ C−
x to be the maximal open

subsets on which expx is well defined.
Choose a (possibly small) immersed spacelike hypersurface µ : Mm

→ Xm+1 such that x = µ(x) for some
x ∈ M and let g be the induced Riemannian metric on M. Let λ̃ : Sm−1

→ ST ∗M be a Legendrian embedding
whose image is the Sm−1-fiber over the point x . Let ν : N → X be the mapped null hypersurface from Theorem 2.1
constructed using the above µ, λ̃ and L = Sm−1. By Theorem 2.1 the natural map ν̃ : N → ST X is a Legendrian
immersion.

Let Nl ∈ Tµ◦λ(l)X = Tx X, l ∈ Sm−1, be the future pointing null vector field along µ◦λ that we used to construct ν.

Consider the map h : Sm−1
× R → (C+

x t C−
x t 0) ⊂ Tx X defined by h(l, t) = t Nl . PutN+ (respectivelyN−) to be

the open subset of N ⊂ Sm−1
× R consisting of all the points with the positive (respectively negative) R-coordinate.

Clearly h : N+
→ C+ and h : N−

→ C− are diffeomorphisms and expx (h(l, t)) = ν(l, t), for all (l, t) ∈ N±.

Combining this with Remark 2.2 we get that expx : C+
x → X and expx : C−

x → X are mapped null hypersurfaces,
i.e. the exponential of the future and of the past null hemicones at x are mapped null hypersurfaces on the maximal
open subsets where they are defined. In particular if an open U ⊂ C± is such that expx |U is an embedding, then
expx : U → X is an embedded null hypersurface.1

Moreover by Theorem 2.1 the natural maps C+
x → ST X = ST ∗X and C−

x → ST X = ST ∗X are Legendrian
immersions.

Let µ′
: M′

→ X be an immersed spacelike hypersurface. Then by Theorem 3.1 the map expx |C+
x

: C+
x → X

defines the Legendrian immersion λ̃µ′,expx |C+
x

: Lµ′,expx |C+
x

→ STM′ such that Im(prM′ ◦̃λµ′,expx |C+
x
) = expx (C+

x )∩

µ′(M′). Thus the intersection of the future null cone of x with the spacelike immersed hypersurface µ(M′) is
naturally parameterized by the projection toM′ of the Legendrian immersion to ST ∗M′.

Similarly one get that the intersection of the past null cone of x with the spacelike immersed hypersurface µ(M′)

is also naturally parameterized by the projection toM′ of a Legendrian immersion to ST ∗M′.
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Appendix. Low’s [9] results on null congruences and Legendrian submanifolds of the space of null geodesics
in globally hyperbolic and strongly causal (X3+1, g)

Recall a few more Lorentzian geometry definitions and facts. An open set in (Xm+1, g) is causally convex if
its intersection with every non-spacelike curve is connected and (X, g) is strongly causal if every point in it has

1 In the work of Lerner [7, Lemma 2] it is proved that the exponential of the future null cone of x is an embedded null hypersurface when
restricted to the preimage under expx of a simple neighborhood of x . We did not find more general statements about null cones giving rise to
embedded null hypersurfaces in the literature. Miguel Sanchez pointed to us that the fact that expx |U is an embedded null hypersurface also
follows from the Gauss Lemma for Lorentzian manifolds [11] and we thank him for this remark.



2122 V.V. Chernov Tchernov / Journal of Geometry and Physics 57 (2007) 2114–2123

Fig. A.1. Legendrian submanifold with a “flying saucer” projection.

arbitrarily small causally convex neighborhoods. A strongly causal space–time (X, g) is globally hyperbolic if for
every x1, x2 ∈ X the set of all x ∈ X such that there exists a piecewise smooth non-spacelike curve from x1 to x2
through x is compact.

A Cauchy surface M is a subset of a space–time X such that for every inextensible non-spacelike curve γ (t) in X
there exists exactly one t0 ∈ R with γ (t0) ∈ M . A space–time is globally hyperbolic if and only if it admits a Cauchy
surface, see [5, pp. 211–212]. Geroch [3] showed that globally hyperbolic (X, g) are rather simple topologically and
they are homeomorphic to a product of R and a Cauchy surface. Bernal and Sanchez [2] showed that every globally
hyperbolic space–time (Xm+1, g) admits a smooth spacelike Cauchy surface and moreover X is in fact diffeomorphic
to a product of R and this Cauchy surface.

Put N = N(X,g) to be the space of all future directed null geodesics in (X, g) up to an affine reparameterization.
In general N is not a manifold. However for globally hyperbolic (X, g), the space N is a smooth contact manifold
contactomorphic to the spherical cotangent bundle ST ∗M of a smooth spacelike Cauchy surface Mm

⊂ Xm+1. This
fact was proved by Low [9, Corollary 1, Lemma 2, Corollary 2] for (3+1)-dimensional globally hyperbolic (X3+1, g).
This result and the techniques, Low used to get it, generalize to globally hyperbolic space–times of all dimensions,
see Natario and Tod [10, pp. 252–253].

Since the Cauchy surface M is spacelike we can identify ST M and ST ∗M . Under the contactomorphism
N → ST ∗M a null geodesic γ is mapped to the point of ST ∗M = ST M that is the direction of the g-orthogonal
projection to M of the velocity vector of γ at the intersection point of γ with M.

Low [9] observed strong and fascinating relations between null congruences and Legendrian submanifolds of N
for (3 + 1)-dimensional globally hyperbolic (X3+1, g). The combination of his [9, Lemma 2, Corollary 3] says that
the null congruences orthogonal to a two-dimensional spacelike surface are exactly the Legendrian submanifolds of
ST ∗M = N. Unfortunately, if taken literally this statement is false for rather technical reasons.

For example, in order for the Legendrian submanifold to be embedded, rather than immersed, one has to require
that no two points of the two-dimensional spacelike surface Σ belong to the same null geodesic that is g-orthogonal to
Σ . This would follow automatically if the two-dimensional spacelike surface Σ is a subset of some Cauchy surface.
However it is easy to construct examples of two-dimensional embedded spacelike surfaces Σ in globally hyperbolic
(X3+1, g) such that there are two points in Σ that belong to the same null geodesic that is g-orthogonal to Σ .

It also is possible to find Legendrian submanifolds of N that are not realizable as null congruences orthogonal
to a spacelike 2-surface. Consider a globally hyperbolic R4 with coordinates (x1, x2, x3, t) and the Lorentz metric
g = dx2

1 + dx2
2 + dx2

3 − dt2. For τ ∈ R define the spacelike Cauchy surface R3
τ ⊂ R4 to be the set of all the

points whose t-coordinate equals τ . Take a Legendrian submanifold L ⊂ ST ∗R3
0 = ST R3

0 that is described by the
projection of L to R3

0 which is the rotationally symmetric “flying saucer” and the unit length vector field along the
projection of L orthogonal to the “saucer”, see Fig. A.1. We assume that the cusp edge of the “saucer” is the circle
{(x1, x2, 0, 0)|x2

1 + x2
2 = 1} ⊂ R3

0 ⊂ R4.

Since R3
0 is a Cauchy surface, ST ∗R3

0 is identified with N and L gives a Legendrian submanifold L ′
⊂ N.

For every τ , the intersection of the corresponding null congruence with R3
τ will have a cusp edge along the circle

{(x1, x2, τ, τ )|x2
1 + x2

2 = 1} ⊂ R3
τ ⊂ R4 (and possibly other singularities). It is easy to see that the subsets of L ′ that

give rise to the cusp edges {(x1, x2, 0, 0)|x2
1 + x2

2 = 1} ⊂ R3
0 and {(x1, x2, τ, τ )|x2

1 + x2
2 = 1} ⊂ R3

τ are equal. One
verifies that no open in L ′ neighborhood of a point in this subset can be realized as a null congruence orthogonal to
some embedded (or immersed) two-dimensional spacelike surface in (R4, g).
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Low [8,9] also remarked that null congruences orthogonal to two-dimensional spacelike surfaces are related to
Legendrian submanifolds of N for strongly causal (X3+1, g). In this case N is a smooth contact manifold that is
possibly not Hausdorff.

The contact structure on the space of null geodesics and the symplectic structure on the spaces of timelike
and spacelike geodesics in general pseudo-Riemannian manifolds was very recently studied by Khesin and
Tabachnikov [6]. In order for their results to apply the pseudo-Riemannian manifold should be such that these
spaces of geodesics are manifolds. This imposes very strong restrictions on the pseudo-Riemannian manifolds under
consideration.

Our work is motivated by Low’s work and it establishes relations between Legendrian and null maps for an
arbitrary space–time (Xm+1, g), including those space–times for which the space of null geodesics is not a manifold.
In particular, Theorem 2.1 shows that for an immersed spacelike hypersurface µ : Mm

→ Xm+1, the null congruence
associated to a Legendrian map λ̃ : Lm−1

→ ST ∗M gives a mapped null hypersurface ν : Nm
→ Xm+1, and that

moreover the natural map ν̃ : Nm
→ ST ∗X is a Legendrian immersion if λ̃ is a Legendrian immersion.

Theorem 3.1 says that the intersection of a mapped null hypersurface ν : Nm
→ Xm+1 with any immersed

spacelike hypersurface µ′
: M′

→ X gives a Legendrian map to ST ∗M′, and that moreover this map is a Legendrian
immersion if ν̃ is an immersion. In this case the intersection (µ′)−1 (

ν(N ) ∩ µ′(M′)
)

is naturally parameterized by a
Legendrian immersion to ST ∗M′.
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